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ABSTRACT

This report deals with design principles for iterative computational networks.
Such computational networks are used for performing repetitive computations
which typically are not data-dependent. Most of the signal processing
algorithms, like FFT and filtering, belong to this class.

The main idea in this report is the development of mathematical notation for
expressing such designs. This notation captures the important features and
properties of these computational networks, and can be used for analyzing,
for designing, and objectively evaluating computational networks.

H 

— - .- _~~~~~~~~~~~~~~~~~~~~ -~~~~ . ~~~~~~~~~~~~~~~ ~~~~~~~~~



vi

ACKNOWLEDGMENTS

I am grateful to flab Sproull (of CMU) for encouraging me to write this
report, to Bob Kahn (ARPA) for suggesting the application of this technique to
multiplication and division of polynomials, and to Chuck Seitz (Caltech) for
his criti cal review of the draft of this report.

I would like to thank Lisa Moses for her skillful typing of this report , and
especially the mathematical formulae, flebe Hays for her help, Nelson Lucas
for his help in preparing the many drawings which are an Integral part of
this report , and Jim Melancon for the skillful job of putting this report into
Its present shape.

~



1

1. INTRODUCTION

The central point of this report is the application of a precise mathematical
notation to express computational networks. This notation captures the
concepts of arithmetic operations (such as addition and multiplication) and of
t iming (e.g., delaying). Once a design is expressed by means of such a
mathematical notation , it can be evaluated objectively against a predefined set
of design objectives, like performance and cost.

The next section defInes the design objectives that guide the examples in this
report. Obviously, other sets of design objectives may be used without
deviati ng from the spirit of the report.

SectIon 3 deals with the implementation of a Finite Impulse Response ( F I R )
filter , a typical signal processing problem. In that section , several designs are
suggested and evaluated objectively, and the mathematical notation to express
them is developed in parallel.

Throughout this report the term “design ’ means the structure/architecture of
the computational network. This term is the hardware equivalent of the
software term “ algorithm ” .

In that section we consider first a design that follows closely the
mathematical definition of the FIR filter. Later this design Is transformed
several times in order to improve it with respect to the predefined design
objective. ¶

In that section the graphic representations of these designs are the source of
in t uit ion , and the ir mathematical representations are mainly a means for
verifying the correctness of the various transformations of the design.

I n section 4 the same technique and the same notation are applied to
multip lication of polynomials. In this section the mathematical representation
is the guiding force, and the graphic representations are used only for
dr ’,nonstration .

In section 5 the same technique is used for division of polynomials and for
simultaneous m ultiplication and division of polynomials. In this section the
mathematical notation is the only tool used , and the graphic drawings are
used for a demonstration only.
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In sectio n 6 the same technique is applied to synthetic aperture radar (S A R )
processing. Several designs . which result directly from the mathematical
defini t ion and the notation are considered and evaluated.

It Is our conviction that this mathematical notation Is a very powerful tool,
complementing the Intu ition which is based on conventional graphic
representation.

I

_ _  _ _ _  —---- -- --- - - - — —. - - —

______________ - 
,,.-~ 

_ . ~~~,*.. - -
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2. THE DESiGN GOALS

In order to achieve an optimal design, it is necessary to define the design
objectives. The following are typ ically considered to be important:

(a) Correctness and accuracy
(h) I I i j ~h computatio n rate
(r) Low delay
(d)  Low parts count

Mod ularity,  simplicity, etc.
(1) Low power
(g) Small size
(h) l,ow cost

Obvio usly, this is only a partial list. For different applications the relative
weights of these ot’je ctives may vary. It is generally accepted that (a) is the
most important , even though we seem to have evidence that this is not
always the case.

In some cases (h )  is the dominant factor , In others it is (f) and (g). In this
report , we consider (a) through (e), in that priority order.

I..

. - -~—--- , -~ . . . S i~~AI~ T . . - - - ~~~~~~~~~~~~~~~~~~~~~~~ —~ ---
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3. THE FIR-FILTER EXAMPLE

Consider the Finite Impulse Response ( F i R)  filter defined by

N
(1)

i~ 1

This is a nonrecursive filter of the Nth order. Each output (Y) is a weighted
average of the previous N inputs (X).

Typically, the X sequence is a time series, and the (x1) are available
sequentially, starting at x 1, continuing through x2 and x3, up to where
typically m>>N .

The “ edge-effect ” at the initialization may be ignored. It is typical to
dc’Ii ne x1 0 for I ( 0.

TI lE Z OPERATOR

Let Z be the dela y operator such that Zx1 x . 1 (2)

In a system controlled by a central master clock, this Z operator may be
implemented by a simple register.

Simila rly, Z’ is defi ned by Z”x1 x1_~ (3)

Thr ’ Z’~ can be implemented by an n-stage shift register, which is a F I F O
(que ue).

We will use the following properties of the Z operator:

( I )  Z”F(x ,y) ~ F(Z”x,Z’1y) for all n , and

( i f )  if C is a constant then Z’C = C for all n.

Negative values of n mean prediction by m l  steps into the future. Since
prediction of external input is not easy to Implement , it is advisable to use
only n~ O when applying the Z” operator to the input.

- —-- . ..-~~~~-—- . .- , —

H __ 
~~~~~~~~~~~~~w~~~~~~~~~~ i::: :~~ T 1
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TIlE FIR-FILTER IMPLEMENTATiON

N
The expression y~ a1 x~~1 (1)

N
may also be written as y~ ~~ a1 Z 1x~ (4)

1=1

fly using operator-calculus notation , (4) may be wri ~i as

Y ( ~~~ aj Z1 ) X  (5)

For N = 4 this means Y ( a 1Z + a 2Z2 
+ a3Z3 

+ a4Z4) X (6)

which can be implemented by the network shown in figure (Fl) .

Figure (11): The implementation of (6).

The circles In figure (11) with the a ’s represent the multiplications by the
constants written inside them.

1
- —  —~~~--— - — —..- 

.- ..... . - .— -.— .—— .—.——---- -- .- . — -~ 
- —- --—--—-—- .—-- .—
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Checking this network against the design objectives reveals that

(a) Correct ness: The correct expression Is indeed computed , since the
values at P 4. F 7, P 9 and P 10 are Zx~, Z2x,~, Z3x,~ and Z4x, ,
respectively.

(b) Computation rate: The computation rate is the reciprocal of the
computation period , which is the time needed for one multiplication
and for adding N quantities.

( c )  Delay : The delay Is one Z-perj od plus the computation period .

It is not simple to quantify the parts count , (d), and the modularity
objective , (e) .

However, the parts count , (d), can be imptoved! Note that the values at
~~~~ 

~
‘2• p3 and P 4 are all equal to Zr,1. Therefore these

points could be unified. Similarly, P 5, P 6 and P 7 could be unified , and so
can P8 and P 9.

This does not change (a), (b) and (c),  but it does improve (d). The new
network is shown in figure (F2).

~~ 
_ _  _ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

Figure (F2): The improved implementation of (6).

Hence, the parts count , objective (d), is improved by the elimination of 6
delay operators , or (

~
) In the general case. The modularity, objective (.), is

also improved, as seen f rom the repeated modules, marked by dashed lines in
figure (12).

~
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IMPROVING THIS DESIGN

The N-input summation is the Achilles heel of this design, mainly because it
does not comply with the modularity requirement.

In addition, the direction of the information flow from the repeating modules
into the summation is perpendicular to the direction in which these modules
are arranged. This may cause problems with the geometry of the wiring,
both In LSJ and discrete (IC ’s) implementations, and also on and between
printed circuit boards.

In addition , the required number of output lines from any grouping of a set
of several modules Is proportional to their number, and this may pose severe
problems for implementation at any scale.

The way to implement N-input summation is by N- i  additions. Breaking the
summation operation into N - i  additions, and dividing them between the
modules, as shown In figure (F3), alleviates this problem.

I

x 
tuii 

L~~~~j T jJEEI7 a - zN x

o 

~~~~~~~~~~~~
Figure (F3): Using sequential addition.

The network shown In figure (F3) is composed of N identical modules. This
is a great improvement for the design objective (e) , modularity.

The leftmost adder , the one in the first module (with a 1), does not perform
any real addition operation , because one of Its inputs always has the value of
zero. The only purpose of including it in this network is to improve the
modularity. Obviously, in discrete implementations, there is no need to
Include it. Eliminating it trivially improves the performance and the parts

I ~ --_ 
~~~~~~~~~~~~~ _ —J—----- — . - .— - - - —-— — — ~~. 

—
~~~~ _ - — ~~

.—. —~~~~~ —.-—- .
~~~~~- — —

.. ~~~~~~~~ . - -  - . _ _ _ _ _
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count. On the other hand , in integrated implementations, such as LSI , having
it there is a small price for reducing the number of different modules
required.

This implementation is represented by

N
(5)

1 I

In order to improve the delay Involved in this computation , notice that

N N- i
(7)

Only nonnegative powers of Z are used for the input values (X). The
“ prediction ” (Z~~ ) is applied only to the output (Y). It means that at the nth
cycle (i.e., when r is given) the next Y value, y,~~1, is available.

I
This is easy to observe from rewriting (6) as

(8)

and rewriting (7) as

y~ 7
1 
r,~_ 1 +a2 r~~2 +a3 x~~3 +a4x~_ 4 (9)

Jloth (7) and (9) yield the implementation shown in figure (P4).

~ 
r--

~~~rj ~~~~ ‘ 
~zN x

J~~~ Z~~ Y

Figure (F4): The implementation of (7).

I 

- - -----~~~~ —

L - - - ~~~~~~~~~~~ —~ 
-~~

_ .
~~ ._ _-.~~

.i_ -
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Note that In figure (F4) the leftmost adder (in the first module) is redundant,
as mentioned before. So is the rightmost delay (in the last module) which
does not tax the performance. It also may be eliminated In discrete
implementations, but in integrated implementations it is not advisable to do
so.

ABOUT NOTATION

Let us introduce another notation , J](x,Y), representing the multiplication of
X and Y. The purpose of this notation , compared with the usual XY notation,
is to make the multiplication operation explicit in the notation, and to
disti nguish between it and the application of operators.

Note the difference between the following expressions:

N
= 

~~ fl (a1, xn_j) ( i)
i= 1

I

(5)

• and the following expressions:

N-I

~ J] (a1,. 1, x~ _J
1=0

N-I
[
~ fJ (a1,.1, zi) ] X (10)

The first ones, which require unnecessary delay, have the summation range
of ( 1,N J , which Is the “ standard” way for mathematicians for expressing a
set of N objects, whereas the last two use the range (0,N- 1l, which seems to
be less “convenient” , but yields better delay characteristics.

This illustrates the need to beware of “ mental traps” that may be caused by
- - notation. 

- 
-
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IMPROVING TIlE OPERATION RATE

The major deficiency of alt the networks considered so far Is their operation
rate , objective (b) . As noted before, the operation period cannot be shorter
than  the time required for multiplication and addition of N quantities.

I ven when the multip liers are arranged such that the multiplication time
overlaps the addition time, the addition must still propagate through N (or
N - I )  stages.

Since N may be very large , It is desirable to elimi nate the need for this long
propagation. This may be achieved by using the “carry-save” Idea, which
uses extra delays in order to improve the data rate. In our problem we
In t r oduce delay units  between the modules, which delay the output by N
cycles but improve the computation rate.

The resulting network is shown in figure (F5).

# 1 # 2 #3 #4
r I t ~1

< ! ~~~~~~~ i ~~~~~~ 
~

.. ~~~~~ i çj~J z 2 N -1

~ a 1 02 03 04

° 

L~~~~... .. ..1 i 

z z 
L~

_
~ J ~ 

S4~~~ ..r Z~~~~
2 y

Figure (PS): Implementing the “carry-save” Idea.

Note that the network in figure (F6) is implemented by using the very urn.
modules as In figure (P4) and additional delays.

Since three delays were added (for Na 4) ,  the result , which was in
figure (P4), Is delayed by and Is now Z3(Z 1Y) Z2Y, and in
general.

~ ~~~~~~~~~~~~ - - - ‘~~ j L ~~~ -~~ - — - - - ~ --~~5 . s ~~~ -~~~~------- - — — —
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The rigorous proof that the output is correct is its computation. Let S~ denote
the output of such a network as (F5), with j  modules, The output of (F5) is
therefore S = ~~~ We will prove that in general the output of an N-modules
network Is

S = SN = {
~ 

z~~
1 fl (a1, z2

~ 2) ] x ( 11)

From the structure of the network and the modules, as shown in figure (F6),
we get the following relation:

~~~~~~ +f l (a j , z2~~2)x (12)

Equation ( I I )  Is proved by induction , starting from S0 = 0. Assume that it
holds for SN_ I, and use (12) to evaluate SN :

SN Z SN _ i  + [1 (aN, z2 2 )  x =

= z [E z~~’ -i j~j (aj , z2
~ 2) ] x + fl (aN, z2

~~2) x

N-I

[ ~ z~’~
1 fl (a1, z21 2) + fl (a,,, z21” 2) J X

ig I

[Ez N i  fl (a1, z21 2) ] x Q.E.D. (13)

If the proof seems too rigorous, one can obtain ( 11) directly by numbering
the modules from left to right. In the ith module, a~ is used, multiplied by
Z~~~

2
~X CX at module 1, Z2X in module 2, Z4X In module 3 and Z6X in

module 4)~ the product is then delayed by (here, Z3 for module 1,
for module 2, etc.). Hence, the output , S, Is the sum of these products

each delayed by ~~~ as indicated by ( I I ) .

__
_ _  

_ __ L
_ _ _ _ _ _ _ _  ~~~~~~~~~~~~ - - - - - - - - - -  - - -- - -

~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~ - - - - ~~~~~~~~~~~~
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Direct methods, compa red with rigorous proofs, are simpler and more
intui t ive , but require caution. Intuition Is known to have been misleading on
occasions.

Equation ( 11) can be simplified to yield

= [ ~ zN~ fl (as, z2i-2) ] x = [ ~~ fl (at, zN+i_2) ] x ~
i= 1

N

El zN 2  

~ 
J] ( a~, zi ) ] x = zN2 y (14)

Check this network against the design objectives:

(a) Correct ness: The correct expression is indeed computed , as shown by
equation ( 11) .  - -

( b )  Computat ion rate ; The computation period is now the time required
for a si ngle multipl icat ion followed by a single addition , independent
of the magnitude of N . Since It is easy to overlap the execution of
the multiplication and the addition , we do not attempt to separate
the m even though this may slightly improve the computation period
and the computation rate.

( c )  I)elay: The computation delay is equal to (N-2) computation cycles,
as shown by ( 14) .

(d) J’art s Count: The same number  of adders and multipliers as before is
needed . However , 3 delays are needed in each module. Hence, the
total parts count Is higher (i.e., worse) than before.

( )  Modularity : The modularity is not as good as it Is in the network
shown in figure (F4), which Includes only components Included in
the repeated modules.

In order to improve the modularity, we merge the new delays Into the old
modules. In order not to introduce additional delays, we include in each
module the delay which is on its right on the “ upper” line, and the delay
which is on Its left on the “lower” line. Hence, the network implementation
now I s composed of N modules, each as shown In figure (Fe), without the
need for any additional componc~t ts.

_
I

-

— 

- ~~~~~~~~~ ~~~~~~~~~ _ _ _ _
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z2

~~

2 x_ i

Ô

_D
~~~~~~~~ 

z~~x

s~_ 1

Figure (F6): The ith module.

By using a network which consists of N modules as shown in figure (F6),
the rate is the best which can be achieved (without separating the
multiplication from the addition) and the delay is proportional to N.

ANOTh ER LOOK

At this ti me we would like to ask if the reader has noticed that a very
Important design decision was made without any justification or even
discussion. Please take a moment and recall what has been done so far , and
look for that Important design choice which was made as if no alternative
existed .

This design decision Is the sequentializatlon of the summation-operator. We
Introduced It as a left-to-right sequence of adders without considering other
possibili ties.

We can use a tree-structure, with log2N depth. Here the carry chain is only
log2N long, which Is better than N , but still might be too long. The same
“ carry-save” approach may be used again , by using the delay operation, Z,
between every pair of successive adders.

flow does this design check against the objectives?

(a) Correctness: The correct expression Is indeed computed , as shown
before.

(b) Computat ion rate: The rate is optimal. As before, we wish not to
split the addition from the multiplications.

- — - . - - - -,- -- p~ ~~~~ - 
—- -- - -
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(c) Delay: The delay is only Iog2N.

(d) Parts count: The total number of adders required for adding N
numbers Is N - I , whether they are arranged in linear order or In a
tree structure. Hence no change in the number of adders is needed .

(e) Modular ity : The adders’ binary tree Is again perpendicular to the data
flow and may impose a severe geometrical problem.

By using the modules shown in figure (P7), one can build this network by
ha ving N type-A modules arranged in a linear order and (N -I)  type-B
modules arranged In a binary tree structure.

Type A T ype B

Figure (F?): Modules for the tree implementation

•1
AN t ) ANOT h ER LOOK

We have considered the left-to-right and the binary tree arrangements. Let
us consider next the right-to-left option. At first , it does not appear to be
dif ferent  from the left-to-right , but this point Is worth verifying.

1.1 us look at the network shown in figure (F4), with the direction of the
a ’Idit ion reserved . The resulting network is shown In figure (P8).

Note that the networks shown In figures (F4) and (F8) are identical , and
therefore the latter suffers from the same problem that the former does.

- 1 -
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--I

X ç ffl~ i-Ill’ ~~
Z
~~Y l : l I :

Figure (F8): The right-to-left addition.

The very same “ carry-save” idea can be used again , by adding delays. This
results In the network shown in figure (FO), which is similar to (F5).

x ~ z f ~~~~~ z ~ z2~~ 1 x

, 01 °2 03 04

imó ~cmè imO 
Figure (F9): Bight-to-left addition with delays.

This new network also has to be checked against the design objectives.

Starting from (a), the correctness, we compute the value of the output S, by
using the same technique of numbering the modules from left to right. Now
we get

N
s = [ 

~ z
i
~ fl (a1, z2

~2) ] x (15)
i:1

Not e that this is very similar to ( 11), except that the output of the ith
module is delayed now by instead of by as before, when It was
added to the right.

- ~~~~~~~~ - - -
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The simplification of (15) yields

s [ 
~ 

z1
~’ fl (ai, z2

~~2) j  ~ 
= [

~ fl (as, z3
~ 3) ] x =

[ z 3 
~~ fl (a1, z31) ] x (16)

This is obviously not the desired Y. Therefore, the network shown in figure
(F9) does not perform the correct computation.

Why does the very same approach that worked so well in the network
shown in figure (PS) fail now?

The reason is very simple Indeed. In both cases the delays between the adders
(on the “lowe r ” line) are needed in order to make the computation period
independent of N . The purpose of the other delays (on the “ upper ” line) is to
compensate for the delays on the “lower ” line such that the addition is )
performed coherently.

Since in the left-to-right network (F5) data flows on both lines (the “ lower ”
and the “ upper ”)  In the same direction, the same delays have to be introduced
i n both , to keep the data “i n-step ” . -

- However , I n the right-to-left network (19) data flows on these lines in
opposite di rections. Hence , in order to compensate for a delay on the “ lower”
l ine , data should be accelerated on the “ upper” line. Since Z is used on the
“lower ” , should be used on the “ upper ” .

It Is unfor tunate  that the operation is a prediction which we cannot
imp lement  in the general case. However , in this case each Z ’ happens to
follow a Z, such that each cancels the effect of the other.

Let us replace on the “ upper ” line all the intermodule Z operators by Z~~ .
This cancels the effect of the intramodulç Z operators , such that no delays are
needed on this line. -

-~~~~ — -  — —-- — — —!_—— — - - -.--— — —-,~~~~._~~
__ - — — 4

- ~~~ -~~ :(~- - -  .
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Figure (Pl O) shows the modified network.

Figure (F 10): The modified right-to-left network.

Again , the new design has to be checked against all the design objectives.

Starting with (a), the correctness, we get -

N N

= ~ z1
~ J] (a1, x) z 1 E z ’ fl (as, x) =

N
= [ z~ ~~ fl (a1, z’) ] x = y (17)

This proves the correctness and also shows that there Is no delay whatsoever.
We also know that the computation period Is minimal , since it is equal to the
longest “ atomic ” operation. The parts count is lower than in any other
design , and the network Is modular.

Basód on the above, this design Is optimal with respect to correctness, (a),
computation rate , (b) , and delay, (c), and it also scores highly in the parts
count , (d) , and the modularity, (e), categories.

An alternative way to draw this network is shown in figure (FlI) .  Note
that the additio n is performed , again , in the left-to-right direction , because
the order of the a1’s Is reversed.

- s . _ _

~

A _

~~~

,_, .  -

~

‘

~~~~ 

-



Figure (Fl 1): An alternative drawing of figure (F lO)

- 
- 

APPLYING TIlE Z.NOTATION TO DESIGN EVALUATION

We will show that the Z-notation can be used for the evaluation of all the
networks shown before, from figure (Fl )  to figure (FlO) . We also claim that
this t ransformation can (and should) be performed without the aid of figures
and Intuition.

Let us review the systems which we have discussed so far.

System (A) is the one which resulted directly from the definition , and is
shown in figure (F l )  through figure (F3). Its representation is

System (A): Y [ > f l  (a1, z’) ] x (18)
i= 1

Usin g our experience with this kind of network, we noted that one delay
could be saved , and we transformed this network into system (B), which is
the one shown in figure (F4). Its representation is

N-I
System (B): y [z ~~ fl (a1.,.1, zi) ] x (19)

Then , in order to improve the rate , we further transformed the network into
system (C), the one shown In figure (F5), whose representation is

System (C)1 y [ z ’2 ~ E zN~ fl (at, z21 2) ] x (20)
id
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Then we introduced the right-to-left addition and were able to transform this
system into system (D), the one shown in figure (FlO), whose representation
Is

H N
System (D): Y Z ~ Z1

~~ J] (a i, x) (21)

1 ‘ = 1

N e x t , we compare and evaluate these systems , by usi ng their representations,
without  referring to the figures.

(a) Correctness: From the representation above it Is evident that all of
these systems perform the correct computation.

(b) Bate: Both (A) and (B) require adding N quantities at once.
The refore , their computation period is equal to the time required for
a mul t i p l ica t ion followed by the addition of N numbers , where (C)
and (D) r c qu lr e  only the time needed for a multiplication and a
sin gle addition.

(c) 1k~lay~ In (A) y~ is available In the same cycle as x~. We use this
for delay reference , and denote it as zero delay.

In (B) the enti re expression , on the right-hand side , is multiplied by
the delay Z. This means that the output of the network that
comp utes this expression has to be delayed one cycle in order to have
the same delay as in (a), the zero delay. Hence , without this
additio nal delay, the output , Y , is ad vanced by one cycle , and is equal
to -l cycle. This means it is earlier than (A) by one cycle.

On the othe r hand , (C) requires z~~’~
’2

~ in order to achieve the same
delay. Since this is not feasible to implement , the Y computed by
this network is delayed by (N-2) cycles, compared with (A).

(1)) has, obviously, the same delay as (B). Thus, (D) also is earlier
than (A) by one cycle.

In summary, in the general case, the delays are

System implementation A B C D

Delay (In cycles) 0 -1 N-2 -1
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However , even though both (B) and (D) have the same delay in
cycles, (D) has a smaller delay since its cycle Is shorter. Hence, in
this implementation , ~~~ is available a shorter time after is
given , compared with (B).

( d )  Parts count: The modular Implementations , including the ad~ii tional
delays and the additional adders (which may be required on either
end of the network in order to achieve the modularity), are compared
with each other.

All  four implemen tations require N multipliers , and N adders (or N
mu ltip ly-& -add units) . They differ only in the delay requirements.

lath (A) and (B) require N delays for X.

(C) requires 2N delays for X , and N delays for the partial sums of
the products . These delay units require , in general , more capacity
(bits) tha n for delayIng X , especially if fi xed point arithmetic is
used .

(I)) requires N delays for the partial sums of the products.

(e) Mn (Iula rj ty  and simplic ity :  All four Implementations are equally
mod ular , with the same level of complexity.

The rating of these systems is summarized in the following table. S > T
means that S Is better than T.

(a) Correctness (A) = (B) = (C) (D)
(h) I) .ita rate (C) (I) > (A) (B)
( )  I)elay (D) > (B) > (A) = (C)
(d)  I’art  count (A) (B) > (D) > (C)
( f )  Modul arity (A) (B) (C) = (D)

This  shows that (JJ ) is the best design , if perfor mance is the major objective ,
but (13) is the best design if the parts count Is the major one.

_ _ _ _ _ _ _ _  - - - - - -~~~---~~~,~~ ~- . .
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4. MULTIPLICATION OF POLYNOMIALS

The previous example , the FIR filter , was designed by using intuition to
operate on computational networks represented by drawings, The Z-notation
could be used , but Is less intuitive .

Next we compute multiplication and division of polynomials, and design
computational networks to implement these operations. However, now we use
the Z-notation for the design of the networks, and use diagrams only to
demonstrate the design.

TIlE PROBLEM OF MULTIPLICATION OF POLYNOMIALS

Let A(t) and X(t) be polynomials in t , of degrees c and m , respectively:

A(t ) = ~~~a1 t~ ; X(t) ~~~x 
~ 

t~ (22)

Let Y(t) be the product polynomial of A(s) and X (t ) .

Y (t ) ~~~y1 t~ (~~~a1 t1) (
~ 

x1 ti) (23)

By equating the coefficients of we get

y~ = ~~~~ x~~ (x i = 0 for I < 0  and i >  m) (24)
1=0

We are interested in finding the coefficient set of the polynomial Y~ ), from
the given coefficient sets of A(t) and X(O. We are not interested in
evaluati ng any of these polynomials for particular values of t .

In many applications A(t) is a fixed polynomial , and X (t) is a variable one.
The computation problem Is to compute the rn+c coefficients of Y(t) from the
given WI coefficients of X(t) and the fixed C coefficients of A(t) .

_ _  _ _ _

~~~

1

~

IJ

~ L
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Si nce (2.1)  Is Identical to (1), except for the boundary condition and the
r ange , the same networks that compute the FIR filter can also perform this
polynomial multiplication.

Since (2.1) contains a0, one more stage is needed, and the computation is
per lor med such that y, is available in the cycle when is given. In other
words, the delay now is 0, instead of the -1 cycle as we had before.

Figure (F 12) shows the network for this computation. Note that it starts
wi th  a0 (compa red with a 1 in the previous network) and that its output is Y

(compared with Z 1 Y before). Because of the boundary conditions it is
important  to clear all the delay units before starting the operation , and to
pro vide x. = 0 for I ,n+ 1 , m+2 rn~c. When these values are given, the last C
values of Y are obtained. Since there are mi- c values of Y, and only m values
of  X , this “ runout ’ operation Is indeed expected.

The initial  clearing can be performed , just like the runout operation , by
proving the network with C zero-values for X. During this period the
obtained Y values are invalid.

Obviously, this network is represented by

- “ z1 fl (a1, x) (25) -

~~~~~~~~~~~Figure (F 12): Polynomial multiplication.

..
~ 

— — -— — - — — — — - - - -— - ,~ -.— —----- —-——-- _ 
~~~~~~~~~~~~~~~~~~~~~~~~~
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REVERSING THE ORDER OF X

In several applications it is preferred that is available before In
these cases ~~ is leading and x0 trailing.

If this order Is used , then the operator Z has a predicting role, and Z 1 is a
delay. Since (25) is implemented with positive powers of Z, another
implementation which uses only negative powers of Z is needed.

Multiply (25) by Z C and get

Z
_C Y ~~ Z

1
~~ fl (a1, x) = ~ Z

C~~ fl (a1, x) E z~ fl (ac_i , x) (26)
10  i 0  j dO

Since this has the same structure as (25) the same network can be used to
perform this operation , except for the following three conditions:

(1) is used instead of Z. However, since Z meant a delay before, and
means a delay now, this Is no real change of function, only of

labeling.

(U) The order of the a1’s is reversed , because we have now a~.j where
we had a1 before.

( i i i )  The output now Is Z~ Y instead of Y, as before.

This means that when is given to the network, 
~~~~~~~~~ 

is available.
Therefore, when x,,~, the leading coefficient of X , is made available to the
network, then the leading coefficient of Y, is computed. The resulting
network Is shown In figure (F13).

I 

_ _ _ _  _ _

Figure (F 13): Polynomial multiplication (most significant term leading).

-
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COMPUTING THE SUM OF POLYNOMIAL PRODUCTS

Consider the problem of computing W(t), which is defined by

W(i) = A(e) X(t) + B(t) Y(1) (27)

where A(1) and B(f) are of degree c, and X(() and Y(() are of degree m.
Obviously, W(t) is of degree mi-c.

fly using (26) we may get

w = ~~ z 1 fl( ac_j ,x) + ~ z 1 fl(bc_i,Y) (28)
J=0 j 0

This yields, for c:3. the network shown in figure (F14). However, (28) may
also be written as

C

Z
_C w ~ z~ [I] (ac 1,x) + J](b~_1,Y)] (29)

j :0

which yields the combined network shown In figure (P15).

x~~~~~~ 

_
_ _

_
_ _

_

4z1 ‘ó 1E1 ~~ _ _

0 + ..Jz~J ~~ + , J
~~~

_ I J  
~ 

+ •

~~~~~~5

’

b0 b2

Figure (P14): Sum of polynomial products.

- —- - -
-~ - -  - - ~~~~~~~~~~~~~~~~~~~~~ 

-
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x
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~‘-E- 1 
J .~~~ + 
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~~~~~ 

i j . + z -c w

b0 b1 b2 b3

V

I
Figure (P 15): Sum of polynomial products, combined.
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5. DIVISION OF POLYNOMIALS

TIlE PROBLEM OF DIVIS ION OF POLYNOMIALS

Polynomial division is obviously the inverse of the polynomial multiplication.
The division is defined in the usual way, by the relation

Y(t ) A(t ) X(f) (a~ � 0) (30)

where A(t) and Y( 1) are given polynomials of degree c and rn-i- c, respectively.
X (r),  which is to be determined , is a polynomial of degree m.

Iflvision , unlike multiplication , can be performed only by starting with the
most significant (highest power) of Y. This nonsymmetry is due to requiring
on ly that  the leading coefficient of A(t ) must not be zero.

Therefore , we use (26) and not (25) in order to invert the multiplication.

Equati on (26) states

C
— 

Z
_C y  = ~ z~ J] (ac_i , x) (26)

i O

Since the operation has to be performed from the most significant to the least
sig nificant  term , at any stage In the computation of X(t), the higher order

- terms of X ( 1)  must already be known.

- 
- Therefore , we seek to express X by using A, Y and for positive values

of 1, but not including i~0. 
-

Extract Z0X from (26) and get

Z_c y fl (ac, x) + ~ z~ fl (ac_i , x) (3 1)

~ 

- - - - ~~-
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Isolate it and get

I] (ac, x) Z C y + z~ fl (-ac i,  x) (32)

In order to share the Z~ operation , this can be transformed into

Ii (
~~~ 

x) :~~~ ~~ [[] (-a~~1, x) + E i c Y]  (33)

where = 0 if I # c and = 1.

Since a~ p~ 0, X can be expressed explicitly by

x a~~
’ ~~ z~ [ fl (-ac i ,  x) + Ei c  Y J
i:1

The network for p erforming this computation is shown in Figure (P18).

Y~~~
e

~ H ~~~‘ ~
[
~J _ _  H ~- ‘ J

Figure (F 16): Polynomial division, for c 3

—
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Since X is synchronized with Y, is computed and is available at the same
cycle when is given. Since the first coefficient of Y Is ~~~~ and the first
coefficIent of X Is X m * duri ng the first c cycles no is output.

Before starti ng this operation all the Z units  are cleared . Then the Y
coefficie nts are given , one at a t ime (i.e ., one per cycle). The first C cycles
are init ial i zation cycles, and no output is expected. Du ring the next m+1
cycles the coefficients of X , with x,, leadi ng and x0 trailing, are available.

At this point the Z units include the same data that was present in the Z
ta ni ts  of the network shown In Figure (F 13), just before the multiplication
process started .

Since all the Z units  in this network were cleared before the multiplication ,
all the Z-units should contain zeroes after the division. If they are discovered
to contain any nonzero value , the n Y (t) was not a product of A(t) by any
pol ynomial.

In fact , the values in the c delay-units are the coefficients of the remainder
polynomial , R(t), whose degree is less then m . This polynomial is defined by

B(t) = Y(t) - A(() X (t ) (35)

( :IIFCK INC TIlE MULTIPLICATION AND TIlE DIVISION

In order to check ( which Is weaker than ‘ verify ”) these operations , we prove
th at  if we use these networks f irs t  to perform the multiplication of any
arbi t rary polynomial , X(O, by the gi ven polynomial , A(t ) , and then to perform
the di vision of this  product by the sante given polynomial, A(O, then the
s tine arbitrary polynomial X ( l )  results.

Let Y (()  be the result of the multipl ication of X(t) by A(t), and let S(t) be the
result of the di vision of Y(t) by A(t). We will prove that S(t) X(t ) .

— —.- - —- -.- - - - — .--- — —

~

- - -
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From (32)

ac~’ [ Z c y + E z 4 fl (-ac_i, s) j =

substitute (26)

ac ’ [~~~z~ fl (a~~ , x) - ~~~~ fl (ac_i, s) ] =

a;’ [ ac x + ~~~~~ J] (a~~ , x) - z~
1 fl (ac_i, s)] =

x + a;’ ~~~~~~~~ J] (ac_i, x_s) =

= s + a;’ a~ ( x-s ) + ac ’~~ z~
1 

~ (ac_ i, x_s) =

+ a;’ 

~ 
z~ fl (ac_ i , x_ s) (36)

Hence 

- 

z~ [] (ac i ,  x~s) = o (37)

Since the polynomial A(t) is known not to be the zero polynomial because
a~ ~f 0, the polynomial 5(t) must be equal to X(t) . Q.E.D.

- 

- 
- 

. . _ _ _ _ _ _



~~~~~~~~~~~~ - -~~~~~~- -~~~~~~~ ~-~ -

33

SIM EJ I 1’ANE OUS MULT IPLICATION AND DIVISION OF POLYNOMIALS

Ik’fi ne S(f) to be the polynomial obtained by multip lying the arbitrary
polynomial X(t ) by the given polynomial A(t) , and then by dividing this
prod uct by anothe r given polynomial , BU), also of degree C, such that b~ p~ 0.

By following (36) we get

S b
C

’ 
[ ~ z~ fl (ac_ i, x) + ~ z~ fl (-b

~~~_ 1,  s) I =

1= 1

C

= ~~~~ { 
~~ 

x + ~~~~ [ J] (ac_ i, x) + ~] (_b c_ i , s) ]}  (38)

The network which performs this computation is shown in figure (F 17) .
I

x

a2 03

+ 

~~~~~ 

~~~
1] ~~~

. 
+ z ~~ + z +

-b0 -b 1 -b2 b ’

~ S

FIgure (P17): The S • (A X)  I B implementation, for C 3.
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6. SYNTh ETIC APERTURE RADAR

The next example discussed in this section is taken from synthetic aperture
radar (S AR) data processing. This SAR application will be first introduced ,
and later a design for its implementatIon will be discussed .

TI lE SAR PROBLEM

Consider a moving pl atform , such as an aircraft  or a spacecraft , travelling
alon g a straight line. Every period of (NT)- t i me it transmits a radar burst .
whose echo is recorded N times , T period apart. Typical numbers are N 1000
and T 100 nanoseconds, which correspo nd to F5 10MHz.

L t  I be the serial number of a given burst , an d let j  be the ser ial nu a. ‘ I

a given echo return inside it. The value of j varies between 0 and N -I.  -; he
value of I starts at 0 and is continuously increased , as long ar the platft -:~n Is
iii motion. The data D(i .j ) is recorded at the time t~ (N : i -j )T .

We use the notat ion k (Lj ) Ni +j , which is very useful because the data
is recorded in a one-dimensional serial sequence. We omi t  the T from the
notation . Similarly, the Z operator Is a delay by this un i t .

Note that we revert to the original notat ion , where the Input  D (k)  p rec edes the
Inp ut  li(k+1). Hence, Z Is again the delay operator , and Z~ is the p’edictor ,
which should not be applied to external  in pu t  data.

We refer to (t , )  as columns, and to (‘,j) as rows. Hence , there are N rows,
which are parallel to the platform trajectory, and the columns which
cor respond to the radar bursts are perpend icular to the trajector y .

The purpose of collecting the data set {l)(i .j)) is to use it for the computation
of the “ surface function ” F(i ,j ), defi ned by

F(i ,j) 
k —rn 

D( i—k ,j~

for the fixed set of coefficients { a~ I -m s k s +rn).

_ L~~~~UJ
- - -~~~ - --- -- - —-~-a--~~~~~~~ -~~a — 

~~~~~~ 
-
~~~~~~~
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This is a weighted-average of D (i , J) with its neighbors, of the same jth row,
up to m columns on each side.

The defi nit ion (37) ~s an extreme simplification of the actual S A R  problem.
For simplicity many crucial details are omitted. Among these complex details
arc the dc’pendence of the (a1) on its position Inside the burst (Its j  value)
and the effects of the angle bet ween the trajectory of the platform and the
m otion of the planet . These and other details are very Important for the
actual SAR process, but do not contribute to the ideas discussed in this report.

TI l E  DESIG N OF TII F .  NETWORK

When applying the Z operator to the data we get

ZI) ( i .J) = I) ( i ./ -1 ) for j  ) 0 and ZD(i ,0) = D ( i — 1 ,N — 1)  (38)

and Z”fl(i .j ) = D (i - l ,j )  (39)

Substitute (39) in (37) and get

F(I,j) 

k=-rn 
(ak, z~~) D(i ,j) (40)

or F 
~~ [J (a u, z~~) ] J )  [ i

-mN 

~~fl (ak, zkN) ] D =

k = _j t i  k:0

= [ z~~
N
~~~f 1 (ak , z~~) ] ~~~ (41)

where M ”- 2 nj i 1  and a~ is defined by a =

Since we cannot Implement the .( 7L 1%’ operation , the best which we can
compute is Z”~

’
~
’F. which Is }~ lagging by r n (N T )  time behind the input data

seq uence U. This Is to be expected , since the defi nition of F(i ,j ), (37),
requires data which is rn-bursts on each side (past and future).

SInce (4 1) Is very similar to ( 1),  (9) and to (21), we already know how to
compute it. Equation (41) can also be written as

- 

~~- -1~~ _ _ _ _ _ _
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M - 1

7mN F [ > fl (ak, z~~) ] D (42)
k=0

which is basically like, say (8), except that Is used here and Z is used
the re. Hence following the third section (the FIR filter example) w~ get the
fastest implementation represented by

~m N  F =~~~~Z~~ Ii (ak, 1)) (43)

It Is left for the interested reader to check this design against the design
objecti ves, (a) th ro ug h (e).

As mentioned In an earlier section, the operators in (43) are more
expc ’ris lve than those of (4~ ), bc-cause they store products, which usually
(e~pccially in 11x-d-point arithii:etic implementations) have more bits of
info rm a t ion  than  the raw data signal , U .

The reason for moving the Z operators from the raw data to the partial sum
of thc  products , where it is more expensive, is to ~rn- - 

~te the adders in orderto avo id  the  long carry-chain propagation , in order to improve the
COlii pUtatIc)n rate.

However, this sr’paration can be achieved by a single Z, for any value of N .
Ttirr ’fore, in order to achieve the improved computation rate , wi thout
‘ overpayIng ” In parts , the following lni plcnjentation can be used:

M-1
r I > zk IJ (ak , zk~~~ )) ] D (44)

k~0

Note t h a t  the !t irc e occurrences of Z in (44) correspond to three d i f fe ren t
meaning s :  the f i r s t , on the J c I t - h ,~i~d side , represents the delay in the
( o mp u t a l i o n  of F ( re lative to 1)) and does not represen t any device. The

~‘ “co nd Z, in z k , rc ’pr esent s the r~-g istcr s used for holding partial sums of
products , and the t h i r d , In z~~N 

~~~~
, ~ - p r - m n t s  the (N—1 ) —s ta g e shi f t  register

u sed for delaying the i n p u t  signal , U.

Figures  (F 18), (119) and (F20) show the implementations , for m 2 , of (42),
( 13) and (41) , respectively. 

—-- - -
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I ~gur c  (F 18): ‘l’h~ im ph - m en tat ion of (42) .
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Figure (F19): The iiiip lcmentation of (43).
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Figure (F20): The implementation of (44).
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7. SUMMA1{Y AND CONCLUSIONS

We have shown that  the mathematical notation commonly used for the
specificatio n of a computation may imp li c i t ly  suggest some design features
tha t are not necessarily desired .

We suggest that  the mathematical  def in i t ion  be transformed into the
computat ional  network representation notation , which can be evaluated
ac cording to the important  design objectives .

Fur thermore , th is  representation can be transformed symbolically, as opposed
to graphicall y, In order to generate alternative networks, which should also
Ix’ evaluated according to the design objectives.

These transformations should continue un t i l  no fur ther  improvement is
achieved .

Fur thermore, we suggest that It is feasible to implement an automatic system
for per forming these symbolic transformations and evaluations, and highly
recommend it.

“l
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